Skip to main content

Super Keyword in Python



Learning Sections          show

super Keyword in Python

The super keyword in Python is used to call a method from the parent class. It is commonly used in the context of inheritance to invoke the superclass's methods.

Using super with __init__ Method

When a subclass overrides the __init__ method, the super function can be used to call the __init__ method of the parent class.


class Animal:
    def __init__(self, name):
        self.name = name

class Dog(Animal):
    def __init__(self, name, breed):
        super().__init__(name)
        self.breed = breed

# Create an instance of Dog
dog = Dog('Buddy', 'Golden Retriever')
print(dog.name)  # Output: Buddy
print(dog.breed) # Output: Golden Retriever
    

Using super with Other Methods

In addition to __init__, the super function can be used to call any method from the parent class.


class Shape:
    def area(self):
        return 0

class Square(Shape):
    def __init__(self, side):
        self.side = side

    def area(self):
        return self.side ** 2

class Cube(Square):
    def area(self):
        return 6 * super().area()

# Create an instance of Cube
cube = Cube(3)
print(cube.area()) # Output: 54
    

Popular posts from this blog

Introduction to OOPs in Python

  Learning Sections          show Introduction to Object-Oriented Programming (OOP) Object-Oriented Programming (OOP) is a programming paradigm that organizes software design around objects rather than actions and data rather than logic. It revolves around the concept of "objects", which are instances of classes. These objects encapsulate data, in the form of attributes or properties, and behaviors, in the form of methods or functions. OOP promotes modularity, reusability, and extensibility in software development. Key Concepts of OOP: Class: A class is a blueprint or template for creating objects. It defines the attributes (data) and methods (functions) that will characterize any object instantiated from that class. Object: An object is an instance of a class. It is a concrete realization of the class blueprint, containing actual values instead of placeholders for attributes. Encapsulation: Encapsulation is ...

Classes and Objects in Python

  Learning Sections          show Classes and Objects in Python In Python, a class is a blueprint for creating objects. An object is an instance of a class. Classes allow you to logically group data and functions in a way that is easy to manage and reuse. 1. Defining a Class To define a class in Python, you use the class keyword followed by the class name and a colon. Inside the class, you can define attributes and methods. Example: # Define a class class Person : # Class attribute species = 'Human' # Class method def greet ( self ): return 'Hello, I am a person.' # Create an object of the class person1 = Person () # Access class attribute print ( person1 . species ) # Output: Human # Call class method print ( person1 . greet ()) # Output: Hello, I am a person. 2. Creating Objects To create an object of a class, you simply call the class name followed by paren...

Exception Handling in Python

  Learning sections          show Exception Handling in Python Exception handling in Python is done through the use of try , except , else , and finally blocks. This allows you to catch and handle errors gracefully. Below are some examples and explanations: 1. Basic Try-Except The try block lets you test a block of code for errors. The except block lets you handle the error. # Example of basic try-except try : result = 10 / 0 except ZeroDivisionError : print ( "Cannot divide by zero!" ) # Output: # Cannot divide by zero! 2. Handling Multiple Exceptions You can catch multiple exceptions by specifying multiple except blocks. # Example of handling multiple exceptions try : result = 10 / 0 except ZeroDivisionError : print ( "Cannot divide by zero!" ) except TypeError : print ( "Invalid operation!" ) # Output: # Cannot divide by zero! 3. Using Else The e...